

http://www.tenand.com

LITE-ON TECHNOLOGY CORP.

Property of Lite-on Only

6N135/6N136 – High Speed 1MBd Optocouplers FEATURES

Aug 2008

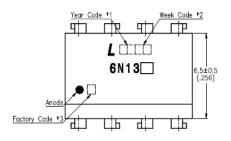
- * High speed 1MBd
- * CTR guarantee $0 \sim 70^{\circ}$ C
- * Instantaneous common mode rejection 1KV/µs
- * UL, CSA, IEC/EN/DIN EN60747-5-2 Pending
- * Dual-in-line package 6N135 / 6N136
- * Wide lead spacing package 6N135M / 6N136M
- * Surface mounting package 6N135S / 6N136S
- * Tape and reel packaging 6N135S-TA / 6N136S-TA, 6N135S-TA1 / 6N136S-TA1

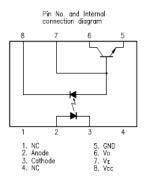
APPLICATIONS

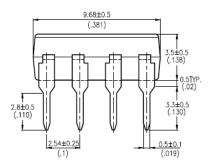
- * High Voltage Isolation
- * Line receivers
- * Feedback Element in Switching Mode Power Supplier
- * High Speed Logic Ground Isolation TTL/TTL, TTL/CMOS, TTL/LSTTL

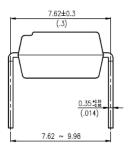
DESCRIPTION

These diode-transistor photocouplers consist of an AlGaAs LED optically coupled to high speed photodetector transistor.

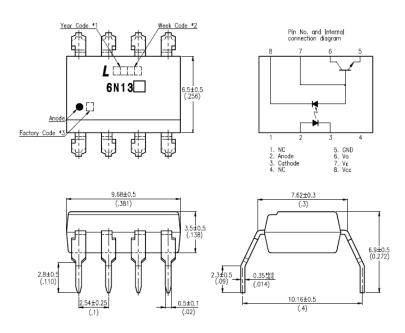

Separate connections for the bias of the photodiode bias and output transistor collector increase the speed up to several times that of a conventional phototransistor photocouplers by reducing the capacitance of base-collector.


Part No.: 6N135 / 6N136 Series (Preliminary Date Sheet) Page: 1 of 10

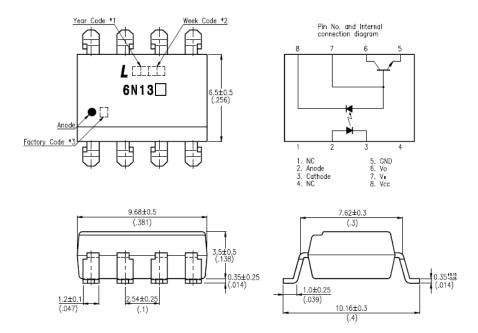

Property of Lite-on Only


OUTLINE DIMENSIONS

6N135 / 6N136



6N135M / 6N136M


- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark shall be marked (Z : Taiwan, Y : Thailand).

Part No.: 6N135 / 6N136 Series (Preliminary Date Sheet)

Page: 2 of 10

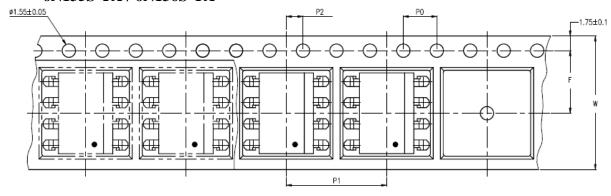
OUTLINE DIMENSIONS

6N135S / 6N136S

- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark shall be marked (Z : Taiwan, Y : Thailand).

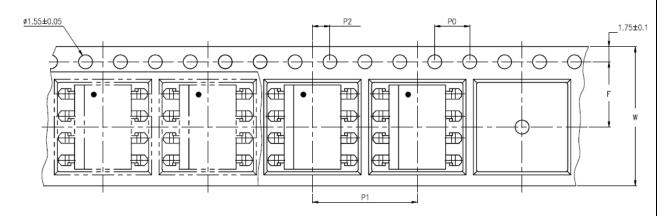
Part No.: 6N135 / 6N136 Series (Preliminary Date Sheet)

BNS-OD-C131/A4


LITEON


LITE-ON TECHNOLOGY CORP.

Property of Lite-on Only


TAPING DIMENSIONS


6N135S-TA / 6N136S-TA

6N135S-TA1 / 6N136S-TA1

Description	Symbol	Dimensions in mm (inches)
Tape wide	W	16 ± 0.3 (.63)
Pitch of sprocket holes	P ₀	4 ± 0.1 (.15)
Distance of compartment	F P2	$7.5 \pm 0.1 \ (.295)$ $2 \pm 0.1 \ (.079)$
Distance of compartment to compartment	P ₁	12 ± 0.1 (.472)

Part No.: 6N135 / 6N136 Series (Preliminary Date Sheet)

Page: 4 of 10

Property of Lite-on Only

ABSOLUTE MAXIMUM RATING

 $(Ta = 25^{\circ}C)$

		PARAMETER	SYMBOL	RATING	UNIT
INPUT		Forward Current	IF	25	mA
		Reverse Voltage	VR	5	V
		Power Dissipation	P	35	mW
		Supply Voltage	V _{CC}	-0.5 ~ +30	V
		Output Voltage	Vo	-0.5 ~ +20	V
OUT	ГРИТ	Emitter-base Reverse Voltage	$V_{\rm EBR}$	0.5	V
		Average Output Current	I _O	8	mA
		Power Dissipation	Po	100	mW
1	Isolati	on Voltage	V _{iso}	5000	Vrms
	Opera	ting Temperature	$T_{ m opr}$	-40 ~ +100	°C
	Storage Temperature		$T_{ m stg}$	-55 ~ +125	°C
2	Solder	ring Temperature	$T_{ m sol}$	260	°C

Notes:

1. AC For 1 Minute, R.H. = $40 \sim 60\%$

Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.
- 2. For 10 Seconds

Part No.: 61	6N135 / 6N136 Series (Preliminary Date Sheet)	Page:	5 of 10
--------------	---	-------	---------

Property of Lite-on Only

ELECTRICAL - OPTICAL CHARACTERISTICS

($T_A = 25$ °C, unless otherwise specified)

PARAMETER			SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
	Input Forward Voltage		V_{F}	_	1.45	1.7	V	Ta=25°€, IF=1.6mA
	Input Forward Voltage Temperatu	re Coefficient	$\Delta V_{\text{F}} / \Delta Ta$	_	-1.6	_	mV/°C	IF=16mA
	Input Reverse Voltage		BV_R	5.0	_	_	V	Ta=25°C, IR=10 μ A
2	Comment Transfer Detic	6N135	CTR	7	_	50	0,1	I _F =16mA, Vo=0.4V,
3	Current Transfer Ratio	6N136	CIR	19	_	50	%	V _{CC} =4.5V
		6N135	$V_{ m OL}$	_	_	0.4	V	I _F =16mA, I _O =1.1mA, V _{CC} =4.5V
	Logic Low (0) Output Voltage				_	0.5		I _F =16mA, I _O =0.8mA, V _{CC} =4.5V
		6N136			_	0.4		I _F =16mA, I _O =3mA , V _{CC} =4.5V
			${ m I}_{ m OH}$	он —	_	0.5	μΑ	I_F =0, V_{CC} = V_0 =5.5 V , T_A = 25 $^{\circ}C$
	Logic High (1) Output Current				_	1		$I_F=0, V_{CC}=V_0=15V$ $T_A=25^{\circ}C$
						50		I _F =0, V _{CC} =Vo=15V
4	Logic Low (0) Supply Current		I_{CCL}	_	_	200	uA	IF=16mA, V _{CC} =15V Vo=open
4	Logic High (1) Supply Current		I_{CCH}	_	_	1	- μΑ	I_F =0, V_{CC} =15V, Vo= open, T_A = 25°C
				_	_	2		I _F =0, V _{CC} =15V, Vo= open

** All typical at $T_A = 25^{\circ}C$

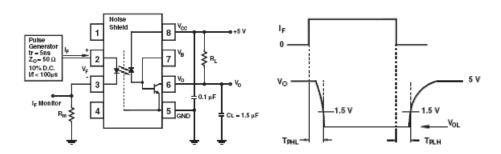
Part No.: 6N135 / 6N136 Series (Preliminary Date Sheet) Page: 6 of 10

Property of Lite-on Only

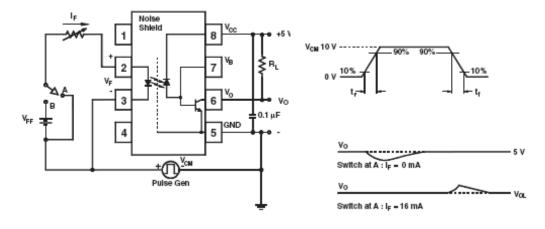
SWITCHING SPECIFICATIONS (AC)

($T_A = 0 \sim 70$ °C, $V_{CC} = 5V$, unless otherwise specified)

PARAMETER		SYM.	MIN.	TYP.	MAX.		UNIT	CONDITIONS	
					T _A =25°C				
	6N135				1.5			IF = 16mA, $R_L = 4.1 k \Omega$ (7)	
Propagation Delay time to Logic Low Output (1)→(0)				-		2	μs		
Logic Low Output $(1) \rightarrow (0)$	6N136	$t_{ m PHL}$			0.8			$IF = 16mA,$ $R_L = 1.9k \Omega(8)$	
						1.0			
	6N135		—	_	1.5			$IF = 16\text{mA},$ $R_L = 4.1 \text{k}\Omega (7)$	
Propagation Delay time to			_	_		2			
4 Logic High Output (0)→(1)	6N136	t _{PLH}	_	_	0.8		us	$IF = 16mA,$ $R_L = 1.9k\Omega(8)$	
			_	_		1			
Instantaneous common mod rejection at high logic outpu	le it (1)	CM _H	_	1000	_		V / µs	$\begin{split} &I_{F}\!\!=\!\!0,\\ &\mid V_{CM}\mid =\!\!10V_{P\!-\!P},\\ &RL\!\!=\!\!4.1k\Omega\\ &RL\!\!=\!\!1.9k\Omega \end{split}$	
Instantaneous common mod rejection at low logic output	le t (0)	CM _L	_	1000	_		V / µs	$\begin{split} &I_{F} = 16 mA \\ &\mid V_{CM} \mid = 10_{P-P}, \\ &RL = 4.1 k\Omega \\ &RL = 1.9 k\Omega \end{split}$	


^{**} All typical at $T_A = 25^{\circ}C$

Part No.: 6N135 / 6N136 Series (Preliminary Date Sheet) Page: 7 of 10


Property of Lite-on Only

SWITCHING TEST CIRCUITS (AC)

Switching Time Test Circuit

Common Mode Immunity Test Circuit

Part No.: 6N135 / 6N136 Series (Preliminary Date Sheet)

Page: 8 of 10

Property of Lite-on Only

ISOLATION CHARACTERISTICS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
6 Isolation Resistance (Input-output)	$R_{\text{I-O}}$	_	10 ¹²	_		Ta=25°C, RH<45%, V _{I-O} =500V DC
6 Capacitance (Input-output)	$C_{\text{I-O}}$	_	0.6	_	pF	f=1MHz

^{**} All typical at $T_A = 25^{\circ}C$

Notes.

1. AC For 1 Minute, R.H. = $40 \sim 60\%$

Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.
- 2. For 10 Seconds
- 3. Current Transfer Ratio (CTR) is defined as the ration of output collector current, Io, to the forward LED input current, IF, times 100%.
- 4. Add a 0.1uF bypass capacitor connected between pin5 and pin8 is recommended.
- 5. Common transient immunity in logic high level is the maximum tolerance (positive) dV_{CM}/dt on the leading edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic high state (i.e., Vo>2.0V). Common mode transient immunity in a logic low level is the maximum tolerance (negative) dV_{CM}/dt on the teailing edge of the common mode pulse signal, VCM, to assure that the output will remain in a logic low state (i.e., Vo<0.8V).
- 6. Device considered a two terminal device. Pins 1, 2, 3 and 4 shorted together and Pins 5, 6, 7 and 8 shorted together.
- 7. The 4.1 k Ω load represents 1 LSTTL unit load of 0.36mAand 6.1 k Ω pull up resistor.
- 8. The $1.9 \text{ k}\Omega$ load represents 1 TTL unit load of 1.6mAand 5.6 k Ω pull up resistor.

Part No.: 6N135 / 6N136 Series (Preliminary Date Sheet) Page: 9 of 10

LITEON

LITE-ON TECHNOLOGY CORP.

Property of Lite-on Only

Notes:

- Lite-On is continually improving the quality, reliability, function or design and Lite-On reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio / visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Do not immerse unit's body in solder paste.

Part No.: 6N135 / 6N136 Series (Preliminary Date Sheet) Page: 10 of 10